
Package: corHMM (via r-universe)
October 21, 2024

Version 2.10

Date 2024-08-21

Title Hidden Markov Models of Character Evolution

Maintainer Jeremy Beaulieu <jmbeauli@uark.edu>

Depends ape, nloptr, GenSA

Suggests testthat, knitr, rmarkdown

Imports expm, numDeriv, corpcor, MASS, nnet, phangorn, parallel,
viridis, Rmpfr, igraph, phytools, lhs

Description Fits hidden Markov models of discrete character evolution
which allow different transition rate classes on different
portions of a phylogeny. Beaulieu et al (2013)
<doi:10.1093/sysbio/syt034>.

License GPL (>= 2)

VignetteBuilder knitr

Repository https://thej022214.r-universe.dev

RemoteUrl https://github.com/thej022214/corhmm

RemoteRef HEAD

RemoteSha aa7efef8fbb6b74599c64ca50537b7480f335d07

Contents
ancRECON . 2
ancRECON_slice . 5
ComputeCI . 6
ConvertPhangornReconstructions . 7
corDISC . 8
corHMM . 10
corHMMDredge . 15
corHMMDredgeBase . 18
examples . 21
fitCorrelationTest . 21

1

https://doi.org/10.1093/sysbio/syt034

2 ancRECON

getCVTable . 23
getFullMat . 24
getModelTable . 25
getStateMat4Dat . 27
get_batch_profile_lik . 28
kFoldCrossValidation . 30
makeSimmap . 31
plotMKmodel . 33
plotRECON . 34
plot_batch_profile_lik . 36
rayDISC . 37
simMarkov . 40

Index 42

ancRECON Ancestral state reconstruction

Description

Infers ancestral states based on a set of model parameters

Usage

ancRECON(phy,data, p, method=c("joint", "marginal", "scaled"),
rate.cat, ntraits=NULL, rate.mat=NULL,
model="ARD", root.p=NULL, get.likelihood=FALSE, get.tip.states = FALSE,
tip.fog=NULL, get.info=FALSE, collapse = TRUE)

Arguments

phy a phylogenetic tree, in ape “phylo” format.

data a data matrix containing species information (see Details).

p a vector of transition rates to be used to estimate ancestral states.

method method used to calculate ancestral states at internal nodes. Can be one of:
"joint", "marginal", or "scaled" (see Details).

rate.cat specifies the number of rate categories in the HRM.

ntraits currently, this is automaticall detected and can always be set to NULL.

rate.mat a user-supplied rate matrix index of parameters to be optimized.

model specifies the underlying model if a rate.mat is not provided ("ER", SYM", or
"ARD").

root.p a vector used to fix the probabilities at the root, but “yang” and “maddfitz” can
also be supplied to use the method of Yang (2006) and FitzJohn et al (2009)
respectively (see details).

get.likelihood a logical indicating whether to obtain the likelihood of the rates and states. The
default is FALSE.

ancRECON 3

get.tip.states a logical indicating whether just tip reconstructions should be output. The de-
fault is FALSE.

tip.fog provides the probability that an observed state is not actually in the state it is
assigned to the reconstruction algorithm. These values are assumed either opti-
mized in “corHMM” or supplied by the user. tip.fog=NULL when using this as
a standalone function.

get.info Whether to return information measures at nodes (Boyko and Beaulieu 2021).

collapse a boolean indicating whether to collapse multiple character combinations into
only the observed states. For example, if true a two character dataset contained
(0,0), (1,0), and (1,1), this would be collapsed into 1,2,3. However, if set to false
it would 1,2,4. In combination with a custom rate matrix this allows for the
estimation of transitions between the unobserved character combination. The
default is TRUE

.

Details

This is a stand alone function for computing the marginal, joint, or scaled likelihoods of internal
nodes for a given set of transition rates. Like all other functions contained in corHMM, the tree does
not have to be bifurcating in order for analyses to be carried out. IMPORTANT: If the corDISC,
corHMM, and rayDISC functions are used they automatically provide a tree with the likeliest states
as internal node labels. This function is intended for circumstances where the user would like to
reconstruct states based on rates estimated elsewhere (e.g. BayesTraits, Mesquite, ape).

The algorithm based on Pupko et al. (2000, 2002) is used to calculate the joint estimates of
ancestral states. The marginal method was originally implemented based on a description of an
algorithm by Yang (2006). The basic idea is that the tree is rerooted on each internal node, with the
marginal likelihood being the probabilities of observing the tips states given that the focal node is
the root. However, this takes a ton of time as the number of nodes increase. But, importantly, this
does not work easily when the model contains asymmetric rates. Here, we use the same dynamic
programming algorithm as Mesquite (Maddison and Maddison, 2011), which is time linear with
the number of species and calculates the marginal probability at a node using an additional up and
down pass of the tree. If scaled, the function uses the same algorithm from ace(). Note that the
scaled method of ace() is simply the conditional likelihoods of observing everything at or above
the focal node and these should NOT be used for ancestral state estimation.

The user can fix the root state probabilities by supplying a vector to root.p. For example, in the two
trait case, if the hypothesis is that the root is 00, then the root vector would be root.p=c(1,0,0,0)
for state combinations 00, 01, 10, and 11, respectively. If analyzing a binary or multistate character,
the order of root.p is the same order as the traits – e.g., for states 1, 2, 3, a root.p=c(0,1,0)
would fix the root to be in state 2. If the user supplies the flag root.p=“yang”, then the estimated
transition rates are used to set the weights at the root (see pg. 124 Yang 2006), whereas specifying
root.p=“maddfitz” employs the same procedure described by Maddison et al. (2007) and FitzJohn
et al. (2009). Note that the default root.p=NULL assumes equal weighting among all possible states.

Setting get.likelihood=TRUE will provide the user the joint likelihood of the rates and states.

4 ancRECON

Value
$lik.tip.states

A matrix of the reconstructed tip values. If the number of rate.cats is greater
than 2 then the probability that each observed state is in a particular hidden state
is given.

$lik.anc.states

For joint, a vector of likeliest states at internal nodes and tips. For either
marginal or $scaled, a matrix of the probabilities of each state for each in-
ternal node are returned.

$info.anc.states

A vector containing the amount of information (in bits) that the tip states and
model gives to each node. See Boyko and Beaulieu (2021).

Author(s)

Jeremy M. Beaulieu and Jeffrey C. Oliver

References

FitzJohn, R.G., W.P. Maddison, and S.P. Otto. 2009. Estimating trait-dependent speciation and
extinction rates from incompletely resolved phylogenies. Systematic Biology 58:595-611.
Maddison, W.P. and D.R. Maddison. 2011. Mesquite: a modular system for evolutionary analysis.
Version 2.75 http://mesquiteproject.org
Pupko, T., I. Pe’er, R. Shamir, and D. Graur. 2000. A fast algorithm for joint reconstruction of
ancestral amino-acid sequences. Molecular Biology and Evolution 17:890-896.
Pupko, T., I. Pe’er, D. Graur, M. Hasegawa, and N Friedman N. 2002. A branch-and-bound algo-
rithm for the inference of ancestral amino-acid sequences when the replacement rate varies among
sites: application to the evolution of five gene families. Bioinformatics 18:1116-1123.
Yang, Z. 2006. Computational Molecular Evolution. London:Oxford.
Boyko, J. D., and J. M. Beaulieu. 2021. Generalized hidden Markov models for phylogenetic
comparative datasets. Methods in Ecology and Evolution 12:468-478.

Examples

data(primates)
phy <- multi2di(primates[[1]])
data <- primates[[2]]
MK_3state <- corHMM(phy = phy, data = data, rate.cat = 1)

one way to get the parameters from your corHMM object in the correct order
p <- sapply(1:max(MK_3state$index.mat, na.rm = TRUE), function(x)
na.omit(c(MK_3state$solution))[na.omit(c(MK_3state$index.mat) == x)][1])

using custom params
states_1 <- ancRECON(phy = phy, data = MK_3state$data, p = p, method = "marginal",
rate.cat <- MK_3state$rate.cat, ntraits = NULL, rate.mat = MK_3state$index.mat,
root.p = MK_3state$root.p)

ancRECON_slice 5

ancRECON_slice Ancestral state reconstruction for a particular time

Description

Infers marginal ancestral states based on a set of model parameters at a particular time

Usage

ancRECON_slice(corhmm.obj, time_slice, collapse=TRUE, ncores = 1)

Arguments

corhmm.obj a corhmm object which is the output of the main corhmm function.

time_slice a vector of times to reconstruct (present = 0, root = max(branching.times(phy)))

collapse set collapse to be the same as it was during the corhmm run.

ncores number of cores to use during parallelization.

Details

This is a stand alone function for computing the marginal likelihoods at particular points along a
branch for a given set of transition rates. ancRECON has the technical details of ancestral state re-
construction if you’re interested. The time_slice argument will specify a time point where marginal
reconstructions will be produced. You can imagine the time slice intersecting the branches of the
phylogeny and doing a reconstruction there rather than at nodes as is typically done.

Value

a data.frame. Each row of time_slice is the time period that was specified. node is the closest
tipward node to the slice on a particular branch. position is the amount of time (rootward) from
the nearest node. Remaining columns are the marginal probabilities of each state at that particular
node. There is also a plotting function that I don’t currently export because it’s unfinished. The
example shows how to access it.

Author(s)

James D. Boyko

References

Yang, Z. 2006. Computational Molecular Evolution. London:Oxford.

Boyko, J. D., and J. M. Beaulieu. 2021. Generalized hidden Markov models for phylogenetic
comparative datasets. Methods in Ecology and Evolution 12:468-478.

6 ComputeCI

Examples

library(corHMM)
library(viridis)
data(primates)
phy <- multi2di(primates[[1]])
data <- primates[[2]]
corhmm.obj <- corHMM(phy = phy, data = data, rate.cat = 1)
test <- ancRECON_slice(corhmm.obj, time_slice = c(1, 10, 20, 30, 40, 49),
collapse = TRUE, ncores = 4)
corHMM:::plot_slice_recon(phy, test, col = viridis(3))

ComputeCI Compute confidence around rate estimates

Description

corHMM gives a single point estimate of rates, but this point estimate could be very uncertain. A
traditional way to evaluate confidence is to vary each parameter until the log likelihood gets 2 units
worse, while holding other parameters at their maximum likelihood estimates. That’s fine and fast,
but it can be misled by ridges. So, instead, we want all values that lead to a likelihood within two
log likelihood units of the best. The range will be at least as wide as the univariate estimates but
probably much larger.

Usage

ComputeCI(corhmm.object, desired.delta = 2, n.points=5000, verbose=TRUE,
print_freq=50, ...)

Arguments

corhmm.object The result of a corHMM search.

desired.delta How many log likelihood units to deviate from the optimal likelihood.

n.points How many points to use.

print_freq Output progress every print_freq steps.

verbose Other arguments to pass into the likelihood function.

... further arguments to be passed dentist.

Details

The algorithm tunes: if it is moving too far away from the desired likelihoods, it will decrease the
proposal width; if it staying in areas better than the desired likelihood, it will increase the proposal
width. It will also expand the proposal width for parameters where the extreme values still appear
good enough to try to find out the full range for these values.

In general, the idea of this is not to give you a pleasingly narrow range of possible values – it is to
try to find the actual uncertainty, including finding any ridges that would not be seen in univariate
space.

ConvertPhangornReconstructions 7

Value

A dentist object containing results, the data.frame of negative log likelihoods and the parameters
associated with them; acceptances, the vector of whether a proposed move was accepted each step;
best_neglnL, the best value passed into the analysis; delta, the desired offset; all_ranges, a summary
of the results.

Author(s)

Brian O’Meara (see also the R package Dentist) & exported by James D. Boyko

Examples

data(primates)
phy <- multi2di(primates[[1]])
data <- primates[[2]]
MK_3state <- corHMM(phy = phy, data = data, rate.cat = 1)
confidence_results <- ComputeCI(MK_3state, desired.delta = 2, 200)
print(confidence_results)
plot.dentist(confidence_results)

ConvertPhangornReconstructions

Convert phangorn reconstruction to a vector

Description

Converts a character reconstruction from phangorn into a vector of tip and node states. Nodes where
there are equal weights among states, ties are broken at random.

Usage

ConvertPhangornReconstructions(x, site = 1, best = TRUE)

Arguments

x The phyDat object that contains a character reconstruction from phangorn

site The character number to convert into a vector

best A logical indicating whether the state that maximizes some function (likelihood,
parsimony, etc.) is to be returned.

Details

Creates a vector that contains the best tips and node state from a phangorn reconstruction.

8 corDISC

corDISC Correlated evolution binary traits

Description

Fits a model of correlated evolution between two or three binary traits

Usage

corDISC(phy,data, ntraits=2, rate.mat=NULL, model=c("ER","SYM","ARD"),
node.states=c("joint", "marginal", "scaled", "none"), lewis.asc.bias=FALSE, p=NULL,
root.p=NULL, ip=NULL, lb=0, ub=100, diagn=FALSE)

Arguments

phy a phylogenetic tree, in ape “phylo” format.

data a data matrix containing species information (see Details).

ntraits specifies the number of traits to be included in the analysis.

rate.mat a user-supplied rate matrix index of parameters to be optimized.

model specifies the underlying model.

node.states method used to calculate ancestral states at internal nodes (see Details).

lewis.asc.bias a logical indicating whether the ascertainment bias correction of Lewis et al.
2001 should be used. The default is FALSE.

p a vector of transition rates. Allows the user to calculate the likelihood given a
specified set of parameter values to specified as fixed and calculate the likeli-
hood.

root.p a vector used to fix the probabilities at the root, but “yang” and “maddfitz” can
also be supplied to use the method of Yang (2006) and FitzJohn et al (2009)
respectively (see details).

ip initial values used for the likelihood search. Can be a single value or a vector of
unique values for each parameter. The default is ip=1.

lb lower bound for the likelihood search. The default is lb=0.

ub upper bound for the likelihood search. The default is ub=100.

diagn logical indicating whether diagnostic tests should be performed. The default is
FALSE.

Details

__THIS FUNCTION IS NO LONGER NECESSARY AS IT IS NOW ENTIRELY SUBSUMED
WITHIN__ corHMM (see _Generalized corHMM_ vignette). But we still provide it for those that
are more comfortable using it than exploring the new corHMM function. As before, corDISC takes
a tree and a trait file and estimates transition rates and ancestral states for two or three binary char-
acters (see Pagel 1994). Note, however, that rayDISC can be used to evaluate the same models as

corDISC 9

in corDISC, with the major difference being that, with rayDISC, the rate matrix would have to be
manipulated using rate.mat.maker in order to remove parameters associated with dual transitions.
With corDISC, the input phylogeny need not be bifurcating as the algorithm is implemented to han-
dle multifucations. Polytomies are allowed by generalizing Felsenstein’s (1981) pruning algorithm
to be the product of the probability of observing the tip states of n descendant nodes, rather than
two, as in the completely bifurcating case. For the trait file, the first column of the trait file must
contain the species labels to match to the tree, with the second column onwards corresponding to
the binary traits of interest.

The user can fix the root state probabilities by supplying a vector to root.p. For example, in the two
trait case, if the hypothesis is that the root is 00, then the root vector would be root.p=c(1,0,0,0)
for state combinations 00, 01, 10, and 11, respectively. If the user supplies the flag root.p=“yang”,
then the estimated transition rates are used to set the weights at the root (see pg. 124 Yang 2006),
whereas specifying root.p=“maddfitz” employs the same procedure described by Maddison et al.
(2007) and FitzJohn et al. (2009). Note that the default root.p=NULL assumes equal weighting
among all possible states.

We also note that scoring information that is missing for a species can be incorporated in the analysis
by including an NA for that particular trait. corDISC will then set the trait vector so that the tip
vector will reflect the probabilities that are compatible with our observations. For example, if the
scoring for trait 1 is missing, but trait 2 is scored as 0, then the tip vector would be (1,0,1,0), for
state combinations 00, 01, 10, and 11 respectively, given our observation that trait 2 is scored 0 (for
a good discussion see Felsenstein 2004, pg. 255).

Value

corDISC returns an object of class corDISC. This is a list with elements:

$loglik the maximum negative log-likelihood.

$AIC Akaike information criterion.

$AICc Akaike information criterion corrected for sample size.

$ntraits The number of traits specified.

$solution a matrix containing the maximum likelihood estimates of the transition rates.

$solution.se a matrix containing the approximate standard errors of the transition rates. The
standard error is calculated as the square root of the diagonal of the inverse of
the Hessian matrix.

$index.mat The indices of the parameters being estimated are returned. The numbers corre-
spond to the row in the eigvect and can useful for identifying the parameters
that are causing the objective function to be at a saddlepoint.

$lewis.asc.bias

The setting describing whether or not the Lewis ascertainment bias correction
was used.

$opts Internal settings of the likelihood search

$data User-supplied dataset.

$phy User-supplied tree.

$states The likeliest states at each internal node.

$tip.states NULL

10 corHMM

$iterations The number of iterations used by the optimization routine.

$eigval The eigenvalues from the decomposition of the Hessian of the likelihood func-
tion. If any eigval<0 then one or more parameters were not optimized during
the likelihood search

$eigvect The eigenvectors from the decomposition of the Hessian of the likelihood func-
tion is returned

Author(s)

Jeremy M. Beaulieu

References

Beaulieu J.M., and M.J. Donoghue 2013. Fruit evolution and diversification in campanulid an-
giosperms. Evolution, 67:3132-3144.

Felsenstein, J. 1981. A likelihood approach to character weighting and what it tells us about parsi-
mony and compatibility. Biological Journal of the Linnean Society 16: 183-196.

Felsenstein J. 2004. Inferring phylogenies. Sunderland MA: Sinauer Associates.

FitzJohn, R.G., W.P. Maddison, and S.P. Otto. 2009. Estimating trait-dependent speciation and
extinction rates from incompletely resolved phylogenies. Systematic Biology 58:595-611.

Lewis, P.O. 2001. A likelihood approach to estimating phylogeny from discrete morphological
character data. Systematic Biology 50:913-925.

Maddison, W.P., P.E. Midford, and S.P. Otto. 2007. Estimating a binary characters effect on speci-
ation and extinction. Systematic Biology 56:701-710.

Pagel, M. 1994. Detecting correlated evolution on phylogenies: a general method for the compara-
tive analysis of discrete characters. Proceedings of the Royal Society, B. 255:37-45.

corHMM Hidden Rates Model

Description

Estimates hidden rates underlying the evolution of any number of multi-state characters

Usage

corHMM(phy, data, rate.cat, rate.mat=NULL, model = "ARD",
node.states = "marginal", fixed.nodes=FALSE, p=NULL, root.p="yang",
tip.fog=NULL, ip=NULL, fog.ip=0.01, nstarts=0, n.cores=1,
get.tip.states = FALSE, lewis.asc.bias = FALSE, collapse = TRUE,
lower.bound = 1e-9, upper.bound = 100, opts=NULL)

corHMM 11

Arguments

phy a phylogenetic tree, in ape “phylo” format.
data a data.frame containing species information. The first column must be species

names matching the phylogeny. Additional columns contain discrete character
data. All columns are converted to class factor unless already is.factor. Order of
states is determined by the levels of column. Unobserved levels may be modeled
if collapse=FALSE.

rate.cat specifies the number of hidden rate categories (if 1, there are no hidden states,
see Details).

rate.mat a user-supplied matrix containing indexes of parameters to be optimized (see
Details).

model One of "ARD", "SYM", or "ER". ARD: all rates differ. SYM: rates between
any two states do not differ. ER: all rates are equal.

node.states method used to calculate ancestral states at internal nodes (see Details).
fixed.nodes specifies that states for nodes in the phylogeny are assumed fixed. These are

supplied as node labels in the “phylo” object.
p a vector of transition rates. Allows the user to calculate the likelihood given a

specified set of parameter values to specified as fixed and calculate the likelihood
(see Details).

root.p a vector used to fix the probabilities at the root, but “yang” and “maddfitz” can
also be supplied to use the method of Yang (2006) and FitzJohn et al (2009)
respectively (see details).

tip.fog a fixed value or vector of free parameters to estimate the probability that an ob-
served state is not actually in the state it is assigned. By default tip.fog=NULL.
To estimate tip fog probabilities a vector of integers designating the number of
free parameters is needed as input. See vignette for details on how to carry this
out.

ip initial values used for the likelihood search. Can be a single value or a vector of
unique values for each parameter. The default is ip=1.

fog.ip initial values used for the likelihood search of tip fog. It is always a single value.
The default is fog.ip=0.01.

nstarts the number of random restarts to be performed. The default is nstarts=0.
n.cores the number of processor cores to spread out the random restarts.
get.tip.states a boolean indicating whether tip reconstructions should be output. The default

is FALSE.
lewis.asc.bias a boolean indicating whether to correct for observing a dataset that is not uni-

variate. The default is FALSE

.

collapse a boolean indicating whether to collapse multiple character combinations into
only the observed states. For example, if true a two character dataset contained
(0,0), (1,0), and (1,1), this would be collapsed into 1,2,3. However, if set to false
it would 1,2,4. In combination with a custom rate matrix this allows for the
estimation of transitions between the unobserved character combination. The
default is TRUE

12 corHMM

.

lower.bound lower bound for the likelihood search. The default is lower.bound=1e-9.
upper.bound upper bound for the likelihood search. The default is upper.bound=100.
opts options to pass to nloptr. default is NULL.

Details

This function takes a tree and a trait file and estimates transition rates and ancestral states for any
number of discrete characters using a Markov model with or without "hidden" states. Users are ad-
vised to read the _Generalized corHMM_ vignette for details on how to make full use of corHMM’s
new functionality. In general, these models describe evolution as discrete transitions between ob-
served states. If rate.cat > 1, then the model is a hidden Markov model (HMM; also known
as a hidden rates model (HRM)). The HRM is a generalization of the covarion model that allows
different rate classes to be treated as "hidden" states. Essentially a hidden Markov model allows
for multiple processes to describe the evolution of your observed character. This could be another
(hidden) state or a large group of them. Regardless of the reason, an HMM is saying that not all
observed characters are expected to act the same way.

The first column of the input data must be species names (as in the previous version), but there can
be any number of data columns. If your dataset does have 2 or more columns of trait information,
each column is taken to describe a separate character. The separation of character and state is an
important one because corHMM will automatically remove dual transitions from your model. For
example, say you had 3 characters each with 2 states (0 or 1), but only three of these combinations
were ever observed 0_0_1, 0_1_0, or 1_0_0. With dual transitions disallowed, it is impossible to
move between these combinations because it would mean simultaneously losing and gaining a state
(0_0_1 -> 0_0_0 -> 0_1_0 in one step.) One way around this is to provide a custom rate matrix to
corHMM where transitions are allowed between these states. However, this is also a case where it
would seem appropriate to code the data as a single character with 3 states.

Ambiguities (polymorphic taxa or taxa missing data) are assigned likelihoods following Felsenstein
(2004, p. 255). Taxa with missing data are coded “?” with all states observed at a tip. Polymorphic
taxa are coded with states separated by an “&”. For example, if a trait has four states and taxonA
is observed to be in state 1 and 3, the character would be coded as “1&3”. corHMM then uses this
information to assign a likelihood of 1.0 to both states. Missing data are treated as ambiguous for
all states, thus all states for taxa missing data are assigned a likelihood of 1.0. For example, for a
four-state character (i.e. DNA), a taxon missing data will have likelihoods of all four states equal to
1.0 [e.g. L(A)=1.0, L(C)=1.0, L(G)=1.0, L(T)=1.0].

Rate matrices are usually generated via the specified model, but custom matrices can be used by
supplying rate.mat. Similar to the output of model, the required format is a matrix of dimensions
nTraitStates x nTraitStates, in which each transition is given an index value. Transitions with the
same value will be optimised to have the same rate, so e.g. a vector with all 1’s would correspond
to the ER model. Transitions which are not allowed (e.g. representing two changes at once, like 00
-> 11) or not possible (e.g. the diagonal) can be set as 0 or NA.

If a user wants to calculate the likelihood for a fixed set of transition rates, without optimising them,
a vector p of those values has to be provided. The positon of those values in the vector should
correspond the the index numbers in rate.mat, if provided, or to those resulting from the specified
model. If for any reason, any index numbers are not present in rate.mat, those positions in the
vector will have to be populated with a placeholder (any number or NA will do), to prevent rates
from shifting when being assigned to the transitions.

corHMM 13

The likelihood function is maximized using the bounded subplex optimization routine implemented
in the R package nloptr, which provides a common interface to NLopt, an open-source library
for nonlinear optimization. In the former case, however, it is recommended that nstarts is set to
a large value (e.g. 100) to ensure that the maximum likelihood solution is found. Users can set
n.cores to parse the random restarts onto multiple processors.

The user can fix the root state probabilities by supplying a vector to root.p. For example, if the
hypothesis is that the root is 0_S in a model with two hidden rates (their categories being denoted
"S" and "F" respectively), then the root vector would be root.p=c(1,0,0,0) for state combinations
0_S, 1_S, 0_F, and 1_F, respectively. If the user supplies the flag root.p=“NULL”, then there is
equal weighting among all possible states in the model. If the user supplies the flag root.p=“yang”,
then the estimated transition rates are used to set the weights at the root (see pg. 124 Yang 2006),
whereas specifying root.p=“maddfitz” employs the same procedure described by Maddison et al.
(2007) and FitzJohn et al. (2009). Note that the default root.p="yang".

Ancestral states can be estimated using marginal, joint, scaled, or none approaches. Marginal gives
the likelihood of state at each node, integrating over the states at other nodes. Joint gives the optimal
state at each node for the entire tree at once (it can only return the most likely state, i.e. it is not
a probability like the marginal reconstruction). Scaled is included for compatibility with ape’s
ace() function. None suppresses calculation of ancestral states, which can dramatically speed up
calculations if you’re comparing models but make plotting difficult.

Value

corHMM returns an object of class corHMM. This is a list with elements:

$loglik the maximum negative log-likelihood.

$AIC Akaike information criterion.

$AICc Akaike information criterion corrected for sample size.

$rate.cat The number of rate categories specified.

$solution a matrix containing the maximum likelihood estimates of the transition rates.
Note that the rate classes are ordered from slowest (R1) to fastest (Rn) with
respect to state 0.

$index.mat The indices of the parameters being estimated are returned. This also is a way to
allow the estimation of transition rates for parameters not oberved in the dataset.
Say you have 2 traits X and Y, where the combinations 00, 01, and 11 are ob-
served (10 is not). A 4 by 4 index matrix could be used to force 10 into the
model.

$data User-supplied dataset.

$data.legend User-supplied dataset with an extra column of trait values corresponding to how
corHMM calls the user data.

$phy User-supplied tree.

$states The likeliest states at each internal node. The state and rates reconstructed at
internal nodes are in the order of the column headings of the rates matrix.

$tip.states The likeliest state at each tip. The state and rates reconstructed at the tips are in
the order of the column headings of the rates matrix.

$states.info a vector containing the amount of information (in bits) that the tip states and
model gives to each node.

14 corHMM

$iterations The number of iterations used by the optimization routine.

$root.p The root prior used in model estimation.

pen.type The penalty type used in model estimation.

lambda The hyperparameter that adjusts penalty severity used in model estimation.

Author(s)

Jeremy M. Beaulieu and James D. Boyko

References

Beaulieu J.M., B.C. O’Meara, and M.J. Donoghue. 2013. Identifying hidden rate changes in
the evolution of a binary morphological character: the evolution of plant habit in campanulid an-
giosperms. Systematic Biology 62:725-737.

Boyko, J. D., and J. M. Beaulieu. 2021. Generalized hidden Markov models for phylogenetic
comparative datasets. Methods in Ecology and Evolution 12:468-478.

Felsenstein, J. 1981. A likelihood approach to character weighting and what it tells us about parsi-
mony and compatibility. Biological Journal of the Linnean Society 16: 183-196.

Felsenstein J. 2004. Inferring phylogenies. Sunderland MA: Sinauer Associates.

FitzJohn, R.G., W.P. Maddison, and S.P. Otto. 2009. Estimating trait-dependent speciation and
extinction rates from incompletely resolved phylogenies. Systematic Biology 58:595-611.

Maddison, W.P., P.E. Midford, and S.P. Otto. 2007. Estimating a binary characters effect on speci-
ation and extinction. Systematic Biology 56:701-710.

Pagel, M. 1994. Detecting correlated evolution on phylogenies: a gneeral method for the compara-
tive analysis of discrete characters. Proc. R. Soc. Lond. B 255:37-45.

Yang, Z. 2006. Computational Molecular Evolution. Oxford Press:London.

Examples

data(primates)
phy <- multi2di(primates[[1]])
data <- primates[[2]]
MK_3state <- corHMM(phy = phy, data = data, rate.cat = 1)
MK_3state

custom rate.mat and user supplied transition rates not to be optimised

this is the rate matrix used in the above example, which represents the ARD
#model with four different rates for all four possible transitions
MK_3state$index.mat

now we specify our own one where the transitions in and out of state 3 are
#forced to be the same:
rate.mat <- matrix(c(NA, 1, NA, 2, NA, 3, NA, 3, NA), 3, 3)

we supply the fixed transition rates for which we want the likelihood
#calculated. Since we optimise 3 states in the above matrix, we have to

corHMMDredge 15

#give a vector with three rates, which will be applied to the transition
#with the corresponding rate above (e.g. the transition 2 -> 1 happens at
#rate 0.05)
p <- c(0.05, 0.02, 0.03)

run
MK_3state.fixed <- corHMM(phy = phy, data = data, rate.cat = 1, rate.mat = rate.mat, p = p)
MK_3state.fixed

corHMMDredge Automatic search for optimal discrete character model with regular-
ization with Penalization Options

Description

corHMMDredge fits a series of hidden Markov models (HMMs) to a given phylogenetic tree and
discrete character data to automatically find the optimal model structure. It offers additional options
for penalization and optimization compared to the standard corHMM function.

Usage

corHMMDredge(phy, data, max.rate.cat, root.p="maddfitz", pen.type = "l1", lambda = 1, drop.par = TRUE, drop.threshold = 1e-7, info.threshold=2, criterion="AIC", merge.params=TRUE, merge.threshold=0, rate.mat=NULL, node.states = "marginal", fixed.nodes=FALSE, ip=NULL, nstarts=0, n.cores=1, get.tip.states = FALSE, lewis.asc.bias = FALSE, collapse = FALSE, lower.bound = 1e-10, upper.bound = 100, opts=NULL, verbose=TRUE, p=NULL, rate.cat=NULL, grad=FALSE)

Arguments

phy An object of class phylo, representing the phylogenetic tree.

data A data frame containing character states for the tips of the phylogeny. The first
column should match the tip labels in phy, and the second onwards column
should contain the observed states.

max.rate.cat The maximum number of rate categories to try.

root.p A vector of probabilities for the root states or a method to estimate them. The
default is the "maddfitz" method.

pen.type The type of penalization applied to the model. Options include "l1", "l2",
"er", and "unreg". See Details.

lambda A hyper-parameter that adjusts the severity of the penalty, ranging from 0 (no
regularization) to 1 (full penalization). Default is 1.

drop.par Logical. Whether to drop parameters during optimization based on a threshold.
Default is TRUE.

drop.threshold A numeric value determining the threshold below which parameters should be
dropped. Default is 1e-7.

info.threshold A numeric value specifying the threshold for the amount of information required
for parameter estimation. Default is 2.

criterion The model selection criterion to use. Options are "AIC", "AICc", or "BIC".
Default is "AIC".

16 corHMMDredge

merge.params Logical. Whether to merge similar parameters during the model search. Default
is TRUE.

merge.threshold

A numeric threshold to determine when parameters should be merged. Default
is 0.

rate.mat A user-supplied matrix containing indexes of parameters to be optimized. If
NULL, an all-rates-different model is estimated.

node.states A method for estimating node states. Options include "marginal", "joint",
and "none".

fixed.nodes Logical. Specifies whether the states for nodes in the phylogeny are assumed
fixed. These are supplied as node labels in the phylo object. Default is FALSE.

ip Initial values used for the likelihood search. Can be a single value or a vector of
unique values for each parameter. The default is ip = 1.

nstarts The number of random restarts to be performed. Default is nstarts = 0.

n.cores The number of processor cores to spread out the random restarts. Default is
n.cores = 1.

get.tip.states Logical. Indicates whether tip reconstructions should be output. Default is
FALSE.

lewis.asc.bias Logical. Indicates whether to correct for observing a dataset that is not univari-
ate. Default is FALSE.

collapse Logical. Indicates whether to collapse branches with no variation in states. De-
fault is FALSE.

lower.bound The lower bound for the rate parameters during optimization. Default is 1e-10.

upper.bound The upper bound for the rate parameters during optimization. Default is 100.

opts A list of options to pass to nloptr for controlling optimization behavior.

verbose Logical. If TRUE, detailed messages about the model fitting process will be
printed. Default is TRUE.

p A vector of transition rates. Allows the user to calculate the likelihood given a
specified set of parameter values to be fixed and calculate the likelihood.

rate.cat An integer specifying the number of rate categories in the model. Only useful if
fitting a fixed value p.

grad Logical. If TRUE, numerical gradient-based optimization will be used. Default
is FALSE. This is useful for highly parameterized models, but because it is a
numerical gradient it is slow.

Details

corHMMDredge will automatically search different model structures dropping parameters which are
estimated near 0 and/or equating parameter values which are near one another. This can be com-
bined with a regularization term (see below) to encrouage lower rate values and thus lead to more
parameters being dropped. It will do this iteratively until a stopping criterion is met. The stopping
criteria is currently a dAIC of 2, meaning if the next step has made the model worse as indicated by
dAIC > 2, the dredge will stop. No model averaging is conducted and only the best model should
be used from a dredge search. I explain this in more detail in Boyko (2024), but by dredging we

corHMMDredge 17

are not specifying a model set ourselves of distinct hypotheses. Model averaging is useful in that
case, but not in the dredge case, because each model as it relates to a hypothesis provides unique
information about the system, but the dredge model fits can be very similar to one another, differing
in only one or two parameters. These do not really provide unique information and are just minor
variations of essentially the same model.

There are 3 penalty types available for users (though this may be expanded in the future). They are
l1, l2, and er. The first two penalty types are analagous to lasso and ridge regression. Whereas the
er penalization is analagous to Zhou et al.’s (2024) McLasso and penalizes the distance between
rate values (i.e., it prefers rate matrices that are closer to an equal-rates model).

Under an l1 regularization scheme, the likelihood is penalized by the mean transition rate. The
mean is used instead of the sum because a sum would overly penalize more complex models by
virtue of them having more parameters. This leads to scenarios where simpler models have much
better likelihoods than more complex models

Under an l2 regularization scheme, the likleihood is penalized by the squared mean transition rate.

Under an er regularization scheme, the likleihood is penalized by the average distance between
parameters. If all the parameters were the same (an equal rates model), the penalty would be 0.

A user can also set pen.type = 'unreg' for an unpenalized likelihood which would be identical
to the original implementation of corHMM. More work needs to be done to determine when to use
each type of penalization, but generally using any penalization will be good for smaller datasets
which tend to be high variance. l2 is the most aggresive penalization, shrinking paramaters more
quickly than other methods and leading to more dropped (and potentially finding more unecessary)
parameters. er is the most similar to an unregularized model as it does not necessarily penalize high
parameter values. It will however penalize a model that has one parameter that is much higher than
the rest unless there is significant evidence that this outlier parameter is needed. In practice, er,
behaves very similarly to unregularized models. l1 regularization is an intermediate penalization
between l2 and er.

The grad option employs a numerical gradient for the optimization. This is a particularly inefficient
way to find a gradient as it will require at least k iterations per likelihood calculation. However, I
have found that this improves the search stability and speed as the number of iterations is greatly
reduced when a gradient is provided. This is also important in cases where there are a lot of pa-
rameters (k is large). In these cases the parameter space is so highly dimensional that many search
algorithms struggle. In the future I hope to implement a more efficient gradient calculation and
combine a gradient based local optimizaiton with a global optimization scheme.

*Note: Many details of corHMMDredgeBase and corHMM are the same and will not be repeated here.
If an arguement is unclear check the Details section of corHMM. The focus of these details will be
on the unique aspects of the dredge fitting approach.

Value

fit_set returns an object of class corhmm.dredge. This is a list of the models being fit. Each
element of that list is of class corhmm.

Author(s)

James D. Boyko

18 corHMMDredgeBase

References

Boyko, J. D. 2024. Automatic Discovery of Optimal Discrete Character Models through Regular-
ization. In prep.

Zhou, Y., Gao, M., Chen, Y., Shi, X., 2024. Adaptive Penalized Likelihood method for Markov
Chains.

Examples

data(primates)
phy <- multi2di(primates[[1]])
data <- primates[[2]]
dredge_fits <- corHMMDredge(phy = phy, data = data, max.rate.cat = 1, pen.type = "l1", root.p = "maddfitz", lambda = 1)
getModelTable(dredge_fits)

corHMMDredgeBase Hidden Rates Model with regularization with Penalization Options

Description

corHMMDredgeBase fits a hidden Markov model (HMM) to a given phylogenetic tree and character
data. It offers additional options for penalization and optimization compared to the standard corHMM
function.

Usage

corHMMDredgeBase(phy, data, rate.cat, root.p="maddfitz", pen.type = "l1", lambda = 1, rate.mat=NULL, node.states = "marginal", fixed.nodes=FALSE, ip=NULL, nstarts=0, n.cores=1, get.tip.states = FALSE,lewis.asc.bias = FALSE, collapse = FALSE, lower.bound = 1e-10, upper.bound = 100, opts=NULL, p=NULL, grad=FALSE)

Arguments

phy An object of class phylo, representing the phylogenetic tree.

data A data frame containing character states for the tips of the phylogeny. The first
column should match the tip labels in phy, and the second onwards column
should contain the observed states.

rate.cat An integer specifying the number of rate categories in the model.

root.p A vector of probabilities for the root states or a method to estimate them. The
default is the "maddfitz" method.

pen.type The type of penalization applied to the model. Options include "l1", "l2",
"er", and "unreg". See Details.

lambda A hyper-parameter that adjusts the severity of the penalty, ranging from 0 (no
regularization) to 1 (full penalization). Default is 1.

rate.mat A user-supplied matrix containing indexes of parameters to be optimized. If
NULL, an all rates different model is estimated.

node.states A method for estimating node states. Options include "marginal", "joint",
and "none".

corHMMDredgeBase 19

fixed.nodes Specifies that states for nodes in the phylogeny are assumed fixed. These are
supplied as node labels in the <e2><80><9c>phylo<e2><80><9d> object. De-
fault is FALSE.

ip Initial values used for the likelihood search. Can be a single value or a vector of
unique values for each parameter. The default is ip=1.

nstarts The number of random restarts to be performed. The default is nstarts=0.

n.cores The number of processor cores to spread out the random restarts.

get.tip.states Logical value indicating whether tip reconstructions should be output. The de-
fault is FALSE.

lewis.asc.bias Logical value indicating whether to correct for observing a dataset that is not
univariate. The default is FALSE

collapse A logical value indicating whether to collapse branches with no variation in
states. Default is FALSE.

lower.bound The lower bound for the rate parameters during optimization. Default is 1e-10.

upper.bound The upper bound for the rate parameters during optimization. Default is 100.

opts A list of options to pass to nloptr.

p A vector of transition rates. Allows the user to calculate the likelihood given a
specified set of parameter values to specified as fixed and calculate the likeli-
hood.

grad A logical value indicating whether to use gradient-based optimization. Default
is FALSE.

Details

There are 3 penalty types available for users (though this may be expanded in the future). They are
l1, l2, and er. The first two penalty types are analagous to lasso and ridge regression. Whereas the
er penalization is analagous to Zhou et al.’s (2024) McLasso and penalizes the distance between
rate values (i.e., it prefers rate matrices that are closer to an equal-rates model).

Under an l1 regularization scheme, the likelihood is penalized by the mean transition rate. The
mean is used instead of the sum because a sum would overly penalize more complex models by
virtue of them having more parameters. This leads to scenarios where simpler models have much
better likelihoods than more complex models

Under an l2 regularization scheme, the likleihood is penalized by the squared mean transition rate.

Under an er regularization scheme, the likleihood is penalized by the average distance between
parameters. If all the parameters were the same (an equal rates model), the penalty would be 0.

A user can also set pen.type = 'unreg' for an unpenalized likelihood which would be identical
to the original implementation of corHMM. More work needs to be done to determine when to use
each type of penalization, but generally using any penalization will be good for smaller datasets
which tend to be high variance. l2 is the most aggresive penalization, shrinking paramaters more
quickly than other methods and leading to more dropped (and potentially finding more unecessary)
parameters. er is the most similar to an unregularized model as it does not necessarily penalize high
parameter values. It will however penalize a model that has one parameter that is much higher than
the rest unless there is significant evidence that this outlier parameter is needed. In practice, er,

20 corHMMDredgeBase

behaves very similarly to unregularized models. l1 regularization is an intermediate penalization
between l2 and er.

The grad option employs a numerical gradient for the optimization. This is a particularly inefficient
way to find a gradient as it will require at least k iterations per likelihood calculation. However, I
have found that this improves the search stability and speed as the number of iterations is greatly
reduced when a gradient is provided. This is also important in cases where there are a lot of pa-
rameters (k is large). In these cases the parameter space is so highly dimensional that many search
algorithms struggle. In the future I hope to implement a more efficient gradient calculation and
combine a gradient based local optimizaiton with a global optimization scheme.

*Note: Many details of corHMMDredgeBase and corHMM are the same and will not be repeated here.
If an arguement is unclear check the Details section of corHMM. The focus of these details will be
on the unique aspects of the dredge fitting approach.

Value

corHMM returns an object of class corHMM. This is a list with elements:

$loglik the maximum negative log-likelihood.

$AIC Akaike information criterion.

$AICc Akaike information criterion corrected for sample size.

$rate.cat The number of rate categories specified.

$solution a matrix containing the maximum likelihood estimates of the transition rates.
Note that the rate classes are ordered from slowest (R1) to fastest (Rn) with
respect to state 0.

$index.mat The indices of the parameters being estimated are returned. This also is a way to
allow the estimation of transition rates for parameters not oberved in the dataset.
Say you have 2 traits X and Y, where the combinations 00, 01, and 11 are ob-
served (10 is not). A 4 by 4 index matrix could be used to force 10 into the
model.

$data User-supplied dataset.

$data.legend User-supplied dataset with an extra column of trait values corresponding to how
corHMM calls the user data.

$phy User-supplied tree.

$states The likeliest states at each internal node. The state and rates reconstructed at
internal nodes are in the order of the column headings of the rates matrix.

$tip.states The likeliest state at each tip. The state and rates reconstructed at the tips are in
the order of the column headings of the rates matrix.

$states.info a vector containing the amount of information (in bits) that the tip states and
model gives to each node.

$iterations The number of iterations used by the optimization routine.

$root.p The root prior used in model estimation.

Author(s)

James D. Boyko

examples 21

References

Boyko, J. D. 2024. Automatic Discovery of Optimal Discrete Character Models through Regular-
ization. In prep.

Zhou, Y., Gao, M., Chen, Y., Shi, X., 2024. Adaptive Penalized Likelihood method for Markov
Chains.

Examples

data(primates)
phy <- multi2di(primates[[1]])
data <- primates[[2]]
MK_3state <- corHMMDredgeBase(phy = phy, data = data, rate.cat = 1, pen.type = "l1", root.p = "maddfitz", lambda = 1)
MK_3state

examples Example datasets

Description

Example files for running various functions in corHMM. The “primates” dataset comes from the ex-
ample files provided by BayesTraits, though here we only include a single tree with branch lengths
scaled to time. The “primates.paint” dataset is the same, but with the tree painted according to hypo-
thetical regimes. Finally, the “rayDISC.example” dataset provides an example on how polymorphic
data can be coded for rayDISC.

Format

a list object that contains a tree of class “phylo” and a dataframe that contains the trait data

References

Pagel, M., and A. Meade. 2006. Bayesian analysis of correlated evolution of discrete characters by
reversible-jump Markov chain Monte Carlo. American Naturalist 167:808-825.

fitCorrelationTest Test for correlation

Description

Automatically fits a set of independent and dependent models to test for correlation between char-
acters.

Usage

fitCorrelationTest(phy, data, simplified_models=FALSE)

22 fitCorrelationTest

Arguments

phy a phylogenetic tree, in ape “phylo” format.

data a data.frame containing species information. The first column must be species
names matching the phylogeny. Additional columns contain discrete character
data.

simplified_models

A boolean which indicates whether to include simplified independent and depen-
dent models (currently only works for two binary-state characters; see Details).

Details

This function automatically fit a set of multi-rate independent and dependent models (with default
corHMM options) to drastically reduce false support for correlation. Currently, the simplified mod-
els are only available for two binary-state characters, but it is straightforward for users to use the
tools available in corHMM to create model structures specific to their questions when the datasets
are more complex.

The correlation between two characters is often interpreted as evidence that there exists a significant
and biologically important relationship between them. However, Maddison and FitzJohn (2015)
recently pointed out that in certain situations find evidence of correlated evolution between two
categorical characters is often spurious, particularly, when the dependent relationship stems from
a single replicate deep in time. In Boyko and Beaulieu (in prep) we showed that there is, in fact,
a statistical solution to the problem posed by Maddison and FitzJohn (2015) naturally embedded
within the expanded model space afforded by the hidden Markov model (HMM) framework.

The problem of single unreplicated evolutionary events manifests itself as rate heterogeneity within
our models and that this is the source of the false correlation. Therefore, we argue that this prob-
lem is better understood as model misspecification rather than a failure of comparative methods to
account for phylogenetic pseudoreplication. We utilize HMMs to develop a multi-rate independent
model which, when implemented, drastically reduces support for correlation.

Value

fitCorrelationTest returns an object of class corhmm_list. This is a list with elements:

$independent_model_fit

A corHMM object of the standard independent model ala Pagel (1994).
$correlated_model_fit

A corHMM object of the standard dependent model ala Pagel (1994).
$hidden_Markov_independent_model_fit

A corHMM object of the hidden Markov independent model which allows for
rate heterogeneity independent of the focal character.

$hidden_Markov_correlated_model_fit.cat

A corHMM object of the hidden Markov dependent model which allows for rate
heterogeneity independent of the focal character as well as correlation between
characters.

$simplified_* If simplified was set to TRUE, then the function will also return simplified ver-
sions of the above models. These models have fewer parameters than the above
models while still being either dependent or independent models.

getCVTable 23

Author(s)

James D. Boyko

References

Maddison W.P., FitzJohn R.G. 2015. The Unsolved Challenge to Phylogenetic Correlation Tests for
Categorical Characters. Syst Biol. 64:127-136.

Examples

data(primates)
phy <- multi2di(primates[[1]])
data <- primates[[2]]
not run because of long run times
#corr_test_fits <- fitCorrelationTest(phy = phy, data = data, simplified_models = TRUE)
#corr_test_fits

getCVTable Print Method for corhmm.kfold Class Objects

Description

Summarize the scores for each fold and the average cross-validation score for objects of class
"corhmm.kfold".

Usage

getCVTable(x)

Arguments

x An object of class "corhmm.kfold" returned from kFoldCrossValidation.

Value

Returns a list of scores per fold for all lambdas and an average score for each lambda.

Author(s)

James D. Boyko

24 getFullMat

getFullMat Combines several rate class index matrices

Description

Combines several index matrices which describe transitions between observed states into output a
single index matrix for use in corHMM

Usage

getFullMat(StateMats, RateClassMat = NULL)

Arguments

StateMats A list of index matrices describing transitions between observed states. Each
unique number from 1 to n, will be independently estimated. Values of 0 are not
estimated. Matrix entries of the same value are estimated to be the same rate.

RateClassMat An optional index matrix which describes how StateMats are related to one an-
other. This will be a matrix of size: length(StateMats) by length(StateMats). By
default, all transitions between StateMats are allowed and independently esti-
mated.

Details

This function is the final step in creating a custom hidden Markov model. It takes a list of index
matrices (StateMats) which describe different ways that the observed states are related to one an-
other and creates a single matrix to describe the model. The matrices are combined following Eq.
2 of Tarasov (2019). getFullMat is part of several functions which help the user efficiently create
custom index matrices. Often, it will be more practical to begin constructing a custom model with
getRateMat4Dat.

getStateMat will generate an index matrix of size n by n in which all transitions between the n
states are allowed and independently estimated. That index matrix can then be manipulated by
dropStateMatPars and equateStateMatPars. dropStateMatPars will drop specific rates from an index
matrix. dropStateMatPars requires an index matrix and a vector of which rates should be dropped.
equateStateMatPars will equates rates within an index matrix. equateStateMatPars requires an index
matrix and a list of vectors each element of which should correspond to two or more rates to be
equated.

Value

Returns an index matrix.

Author(s)

James D. Boyko

getModelTable 25

References

Boyko, J. D., and J. M. Beaulieu. 2021. Generalized hidden Markov models for phylogenetic
comparative datasets. Methods in Ecology and Evolution 12:468-478.

Tarasov, S. 2019. Integration of Anatomy Ontologies and Evo-Devo Using Structured Markov
Models Suggests a New Framework for Modeling Discrete Phenotypic Traits. Systematic Biology,
68(5) 698-716. doi:10.1093/sysbio/syz005

See Also

getRateMat4Dat

Examples

data(primates)
phy <- primates[[1]]
phy <- multi2di(phy)
data <- primates[[2]]
create a legend and rate mat from a multi-character dataset.
LegendAndRateMat <- getStateMat4Dat(data)
rate.mat <- LegendAndRateMat$rate.mat
legend <- LegendAndRateMat$legend

To create a hidden markov model first define your rate classes (state-dependent processes)
R1 will be a manually created SYM model
R1 <- equateStateMatPars(rate.mat, c(1:6))
R2 will only allow transitions between 1 and 2
R2 <- dropStateMatPars(rate.mat, c(3,4))
R1 and R2 will transtion at equal rates (i.e. the parameter process will be ER)
P <- getRateCatMat(2)
P <- equateStateMatPars(P, c(1,2))
combine our state-dependnet processes and parameter process
HMM <- getFullMat(list(R1, R2), P)

This can now be used in a corHMM model
CustomModel <- corHMM(phy = phy, data = data, rate.cat = 2, rate.mat = HMM, node.states = "none")

getModelTable Summarize Model Statistics for a List of corHMM Objects

Description

getModelTable extracts key statistics from a list of fitted corHMM models and returns a summary
table. The table includes the number of parameters, log-likelihood, and model selection criteria
such as AIC, delta AIC, and AIC weights.

Usage

getModelTable(model_list, type = "AIC")

26 getModelTable

Arguments

model_list A list of corHMM objects, each representing a fitted hidden Markov model to
phylogenetic and character data.

type The type of model selection criterion to use. Options are "AIC", "AICc", or
"BIC". Default is "AIC".

Details

This function takes a list of models fitted using corHMM and calculates key statistics for comparison
across models. Specifically, it calculates the number of parameters, log-likelihood, the chosen
model selection criterion (e.g., AIC), the difference in the criterion relative to the best model (delta
AIC), and the relative model weight based on the criterion.

getModelTable can handle different model selection criteria such as AIC, AICc, and BIC by spec-
ifying the type argument.

Value

A data frame with the following columns:

• np: The number of parameters in the model.

• lnLik: The log-likelihood of the model.

• AIC (or the value of type): The model selection criterion value.

• dAIC: The difference in the criterion between the model and the best model (i.e., the model
with the minimum criterion value).

• AICwt: The Akaike weights, representing the relative likelihood of the model given the data.

Author(s)

James D. Boyko

See Also

corHMM for fitting hidden Markov models to phylogenetic data.

Examples

Assuming you have a list of fitted corHMM models:
models <- list(model1, model2, model3)
getModelTable(models)

To use BIC instead of AIC:
getModelTable(models, type = "BIC")

getStateMat4Dat 27

getStateMat4Dat Produce an index matrix and legend from a dataset

Description

Takes a dataset to produce an index matrix that corresponds to a single state-dependent process (i.e.
a single rate category) and a legend which matches input data to the rows and columns of the index
matrix and corHMM solution.

Usage

getStateMat4Dat(data, model = "ARD", dual = FALSE, collapse = TRUE, indep = FALSE)

Arguments

data A data matrix containing species information in the same format as the main
corHMM function: column[,1] is species names, column[,2:n] are the discrete
states.

model One of "ARD", "SYM", or "ER". ARD: all rates differ. SYM: rates between
any two states do not differ. ER: all rates are equal.

dual A boolean indicating whether or not to include dual transitions.
collapse a boolean indicating whether to collapse multiple character combinations into

only the observed states. For example, if true a two character dataset contained
(0,0), (1,0), and (1,1), this would be collapsed into 1,2,3. However, if set to false
it would 1,2,4. In combination with a custom rate matrix this allows for the
estimation of transitions between the unobserved character combination. The
default is TRUE

.

indep A boolean indicating whether or not to return an independent or correlated
model.

Details

This function will generate an index matrix based on user provided data. It provides a useful starting
point for further modifications using dropStateMatPars, equateStateMatPars, and getFullMat.
If more than a single column of data is given double transitions between characters are disallowed.
For example, if character 1 is the presence or absence of limbs, and character 2 is the presence
or absence of fingers, then the transition from absence of limbs and fingers to presence of limbs
and fingers is automatically disallowed. This is consistent with Pagel’s (1994) model of correlated
character evolution.

Value

$legend A named vector. The elements of the vector are all the unique state combinations
in the user data. The names of the vector are the state number assigned to each
combination.

$rate.mat A rate index matrix describing a single rate class.

28 get_batch_profile_lik

Author(s)

James D. Boyko

References

Pagel, M. 1994. Detecting correlated evolution on phylogenies: a gneeral method for the compara-
tive analysis of discrete characters. Proc. R. Soc. Lond. B 255:37-45.

See Also

getFullmat

Examples

data(primates)
phy <- primates[[1]]
phy <- multi2di(phy)
data <- primates[[2]]
create a legend and rate mat from a multi-character dataset.
LegendAndRateMat <- getStateMat4Dat(data)
rate.mat <- LegendAndRateMat$rate.mat
legend <- LegendAndRateMat$legend

get_batch_profile_lik Perform Batch Profile Likelihood Analysis for Multiple Parameters

Description

get_batch_profile_lik is a wrapper function that performs profile likelihood analysis for multi-
ple parameters of a fitted corHMM object. It allows exploration of the likelihood surface by evaluating
the likelihood at various points along the parameter space.

Usage

get_batch_profile_lik(corhmm_obj, range_factor, n_points, verbose=FALSE, ncores = NULL, dredge = FALSE)

Arguments

corhmm_obj A fitted corHMM object representing the model for which profile likelihood anal-
ysis is to be performed.

range_factor A numeric factor determining the range over which to generate points for the
profile likelihood analysis. This value is used to calculate the bounds around the
maximum likelihood estimates (MLEs) for each parameter.

n_points The number of points to generate for each parameter along its profile likelihood
curve.

verbose Whether to print messages about which parameter is being optimized.

get_batch_profile_lik 29

ncores The number of processor cores to be used for parallel computation. Default is
NULL, which uses a single core.

dredge Logical value indicating whether to include model penalization factors such as
pen_type and lambda from the fitted corHMM object. Default is FALSE.

Details

This function performs a profile likelihood analysis for each parameter in a fitted corHMM model. It
evaluates the likelihood at logarithmically spaced points around the maximum likelihood estimates
(MLEs) for the parameters. If dredge is set to TRUE, the function also considers model penalization
terms.

The function works by first generating a set of points along a logarithmic scale for each parameter,
then fixing one parameter at a time while optimizing over the others. The resulting profile likelihood
values are returned for each parameter.

Parallel computation can be enabled using the ncores argument to speed up the analysis.

Value

A list containing the profile likelihood results for each parameter. Each entry in the list corresponds
to a parameter and contains the profile likelihood values across the range of points evaluated. The
original corHMM object is also included in the output.

Author(s)

Your Name

See Also

corHMM for fitting hidden Markov models to phylogenetic data.

Examples

Assuming you have a fitted corHMM object:
data(primates)
phy <- multi2di(primates[[1]])
data <- primates[[2]]
corhmm_fit <- corHMM(phy = phy, data = data, rate.cat = 1)
profile_results <- get_batch_profile_lik(corhmm_fit, range_factor = 2, n_points = 50)
plot_batch_profile_lik(profile_results)

30 kFoldCrossValidation

kFoldCrossValidation Perform K-Fold Cross-Validation for corHMM Models

Description

This function performs k-fold cross-validation on a given corHMM model by dividing the data into k
equally sized subsets. The function evaluates model performance across multiple lambda regular-
ization values, if provided. Optionally, it can save the trained models for each fold and return the
cross-validation results.

Usage

kFoldCrossValidation(corhmm_obj, k, lambdas = NULL, return_model = TRUE, save_model_dir = NULL, model_name = NULL)

Arguments

corhmm_obj A corHMM object that contains a fitted model.

k An integer specifying the number of folds to divide the data into for cross-
validation.

lambdas A numeric vector of lambda regularization values to evaluate during cross-validation.
If NULL, the lambda value from corhmm_obj will be used. Defaults to NULL.

return_model A logical value indicating whether to return the trained models for each fold.
Defaults to TRUE.

save_model_dir A character string specifying the directory to save the trained models for each
fold. If NULL, models will not be saved. Defaults to NULL.

model_name A character string specifying the base name for saved model files. If NULL, a
default name "corhmm.obj" is used. Defaults to NULL.

Details

The function splits the data into k folds and trains a separate corHMM model for each fold by leaving
one fold out as the test set. The remaining folds are used for training the model. The performance
of the model is evaluated on the test set using a divergence-based (Jensen-Shannon Divergence)
scoring method. Evaluations are based on estimating the tips which were removed for that particular
fold given the newly fitted model.

The function supports evaluating models across different lambda regularization values. If lambdas
are provided, models are trained and evaluated for each lambda value. The results, including the
models (if return_model = TRUE) and cross-validation scores, are returned as a list.

Value

A list of cross-validation results, including the following components:

models A list of the trained models for each fold (if return_model = TRUE).

scores A numeric vector of the cross-validation scores for each fold.

averageScore The average cross-validation score across all folds.

makeSimmap 31

Author(s)

James D. Boyko

Examples

data(primates)
phy <- multi2di(primates[[1]])
data <- primates[[2]]
dredge_fits <- corHMMDredge(phy = phy, data = data, max.rate.cat = 1, pen.type = "l1", root.p = "maddfitz", lambda = 1, nstarts = 10, n.cores = 10)
model_table <- getModelTable(dredge_fits)
dredge_model <- dredge_fits[[which.min(model_table$dAIC)]]
k_fold_res <- kFoldCrossValidation(dredge_model, k = 5, lambdas = c(0,0.25,0.5,0.75,1))
getCVTable(k_fold_res)

makeSimmap Simulate a character history

Description

Produces a character history given some of the outputs of a corHMM object.

Usage

makeSimmap(tree, data, model, rate.cat, root.p="yang", nSim=1, nCores=1, fix.node=NULL,
fix.state=NULL, parsimony = FALSE, max.attempt = 1000, collapse=TRUE)

Arguments

tree A phylogeny of class phylo.

data a data.frame containing species information. The first column must be species
names matching the phylogeny. Additional columns contain discrete character
data.

model The transition rate matrix.

rate.cat The number of rate categories.

root.p The root prior to begin the sampling at the root.

nSim The number of simmaps to be simulated.

nCores The number of cores to be used.

fix.node A vector specifying node numbers to be fixed. Also possible to fix tips if using
a hidden Markov model. Tips are in the order of tree$tip.label.

fix.state Specifies which states to fix the nodes. States are specified according to position
in the rate matrix. E.g. If I had binary observed characters 0/1 and two hidden
rate classes A/B and wanted to fix a node as 1B, I would set this to 4.

32 makeSimmap

parsimony A boolean indicating whether node states should be based on conditional likeli-
hood (per Bollback 2006), or if they should be consistent with a parsimonious
model (if TRUE). Parsimony states are evaluted by dividing the rates present in
the variable, model, by 1000 and evaluating the conditional likelihood of each
state. However, by lowering the rates we can approximate a parsimony recon-
struction (Steel and Penny 2000).

max.attempt A numeric value indicating the maximum number of attempts to create a pos-
sible path between an initial and final state on a branch. When the maximum
value is reached we use the Floyd-Walsh algorithm to produce the shortest path
between the two states and divide the branch into equal segments.

collapse a boolean indicating whether to collapse multiple character combinations into
only the observed states. For example, if true a two character dataset contained
(0,0), (1,0), and (1,1), this would be collapsed into 1,2,3. However, if set to false
it would 1,2,4. In combination with a custom rate matrix this allows for the
estimation of transitions between the unobserved character combination. The
default is TRUE

.

Details

This function will generate a character history given a model and dataset. It has a similar struc-
ture to the simmap generated in phytools and follows the methods of Bollback (2006). If using
hidden states, then it is necessary to reconstruct the tip probabilities as well as the node probabil-
ities (i.e. get.tip.states must be TRUE when running corHMM). We chose not to implement any new
plotting functions, instead makeSimmap produces a simmap object which is formatted so it can used
with other R packages such as phytools (Revell, 2012). For additional capabilities, options, and
biological examples we refer readers to the detailed _Generalized corHMM_ vignette.

Value

A list of simmaps.

Author(s)

James D. Boyko

References

Boyko, J. D., and J. M. Beaulieu. 2021. Generalized hidden Markov models for phylogenetic
comparative datasets. Methods in Ecology and Evolution 12:468-478.

Bollback, J. P. 2006. SIMMAP: stochastic character mapping of discrete traits on phylogenies.
BMC Bioinformatics 7:88.

Revell, L. J. 2012. phytools: an R package for phylogenetic comparative biology (and other things).
Methods in Ecology and Evolution, 3(2), 217-223.

Steel, M., and D. Penny. 2000. Parsimony, Likelihood, and the Role of Models in Molecular
Phylogenetics. Molecular Biology and Evolution 17:839-850.

plotMKmodel 33

Examples

data(primates)
phy <- primates[[1]]
phy <- multi2di(phy)
data <- primates[[2]]

##run corhmm
MK <- corHMM(phy, data, 1)

##get simmap from corhmm solution
model <- MK$solution
simmap <- makeSimmap(tree=phy, data=data, model=model, rate.cat=1, nSim=1, nCores=1)

we import phytools plotSimmap for plotting
library(phytools)
plotSimmap(simmap[[1]])

plotMKmodel Plot a Markov model

Description

Plots a diagram of a Markov model from the output of corHMM or a custom index matrix

Usage

plotMKmodel(corhmm.obj, rate.cat = NULL, display = "column", color = c("blue", "red"),
arrow.scale = 1, text.scale = 1, vertex.scale = 1)

Arguments

corhmm.obj an object of class corHMM or matrix.
rate.cat if using a custom matrix then the number of rate categories must be indicated.
display the structure of the plot. one of "column", "square", or "row".
color Either, 1. a vector of 2 colors to create a gradient from low transition rates (first

element) to high transition rates (second element), or 2. "col.blind" which will
use the color pallete "plasma" from viridis.

arrow.scale determines the size of the arrows for the Markov diagram.
text.scale determines the size of the text for the plotted matrix.
vertex.scale determines the size of the text for the Markov diagram.

Details

Plots Markov models in a ball and stick type diagram next to its corresponding matrix. If plotting
a hidden rates model it will produce a compound plot describing how the different rate classes are
related to one another. If the input is a corHMM result then arrows are colored by relative rate. If the
input is a custom matrix arrows are colored by the paramater index.

34 plotRECON

Value

Returns a ball and stick diagram of the input model.

Author(s)

James D. Boyko

References

Boyko, J. D., and J. M. Beaulieu. 2021. Generalized hidden Markov models for phylogenetic
comparative datasets. Methods in Ecology and Evolution 12:468-478.

Examples

data(primates)
phy <- primates[[1]]
phy <- multi2di(phy)
data <- primates[[2]]
create a legend and rate mat from a multi-character dataset.
LegendAndRateMat <- getStateMat4Dat(data)
rate.mat <- LegendAndRateMat$rate.mat
legend <- LegendAndRateMat$legend

To create a hidden markov model first define your rate classes (state-dependent processes)
R1 will be a manually created SYM model
R1 <- equateStateMatPars(rate.mat, c(1:6))
R2 will only allow transitions between 1 and 2
R2 <- dropStateMatPars(rate.mat, c(3,4))
R1 and R2 will transtion at equal rates (i.e. the parameter process will be ER)
P <- getRateCatMat(2)
P <- equateStateMatPars(P, c(1,2))
combine our state-dependnet processes and parameter process
HMM <- getFullMat(list(R1, R2), P)
plot the input
plotMKmodel(HMM, rate.cat = 2)

This can now be used in a corHMM model
CustomModel <- corHMM(phy = phy, data = data, rate.cat = 2, rate.mat = HMM, node.states = "none")
plot the output
plotMKmodel(CustomModel)

plotRECON Plot ancestral state reconstructions

Description

Plots maximum likelihood ancestral state estimates on tree

plotRECON 35

Usage

plotRECON(phy, likelihoods, piecolors=NULL, cex=0.5, pie.cex=0.25, file=NULL,
height=11, width=8.5, show.tip.label=TRUE, title=NULL, ...)

Arguments

phy a phylogenetic tree, in ape “phylo” format.

likelihoods likelihoods for ancestral states (see Details).

piecolors a vector of colors for states.

cex specifies the size of the font for labels (if used).

pie.cex specifies the size of the symbols to plot on tree.

file filename to which a pdf is saved.

height height of plot.

width width of plot.

show.tip.label a logical indicating whether to draw tip labels to tree. The default is TRUE.

title an optional title for the plot.

... Additional arguments to be passed to the plot device

Details

Plots ancestral state estimates on provided tree. The likelihoods can be the states of an object
of class rayDISC or class corDISC, or the lik.anc of an object of class ace (from the ape package).

Value

A plot indicating the maximum likelihood ancestral states at each internal node.

Author(s)

Jeffrey C. Oliver

See Also

corDISC, rayDISC

Examples

data(rayDISC.example)
Perform ancestral state estimation, using a single rate of evolution and marginal
reconstruction of ancestral states
recon <- rayDISC(rayDISC.example$tree,rayDISC.example$trait,model="ER",
node.states="marginal")
Plot reconstructions on tree
plotRECON(rayDISC.example$tree,recon$states,title="rayDISC Example")

36 plot_batch_profile_lik

plot_batch_profile_lik

Plot Batch Profile Likelihoods

Description

Plots profile likelihoods for each parameter in a batch from the output of a profile corHMM ob-
ject, displaying the log-likelihoods across parameter values and indicating the maximum likelihood
estimate (MLE) and the 95% confidence interval.

Usage

plot_batch_profile_lik(corhmm_profile, n_cols = NULL, n_rows = NULL, mar = c(5, 4, 4, 1) + 0.1, ci_level = 1.96, polygon_col = "lightgrey", line_col = "black", line_type = "l", mle_col = "blue", ci_line_col = "black", ci_line_type = "dashed", axis_tick_length = -0.2, label_cex = 0.7, ylim=NULL)

Arguments

corhmm_profile a list containing profile likelihood tables for each parameter and the corHMM
object with MLE and loglik attributes.

n_cols optional; number of columns for the plotting layout. If NULL, automatically
calculated based on the number of parameters.

n_rows optional; number of rows for the plotting layout. If NULL, automatically calcu-
lated based on the number of parameters.

mar margins around the plot. Defaults to c(5, 4, 4, 1) + 0.1.
ci_level z-value for the 95% confidence interval. Defaults to 1.96.
polygon_col color of the polygon under the curve. Defaults to "lightgrey".
line_col color of the profile likelihood curve. Defaults to "black".
line_type type of the profile likelihood curve. Defaults to "l".
mle_col color of the MLE point. Defaults to "blue".
ci_line_col color of the 95% CI line. Defaults to "black".
ci_line_type line type for the 95% CI line. Defaults to "dashed".
axis_tick_length

length of the axis ticks, with negative values indicating ticks pointing inwards.
Defaults to -0.2.

label_cex character expansion size for labels, affecting the size of text labels. Defaults to
0.7.

ylim a user-specified upper and lower limit to the y-axis.

Details

This function generates a series of plots for the profile likelihood of each parameter in the input
corHMM model object. It visualizes the log-likelihood across the range of parameter values, high-
lights the maximum likelihood estimate (MLE), and denotes the 95% confidence interval with a
horizontal dashed line. The function is designed to accommodate the batch analysis of multiple
parameters, organizing the plots in a specified layout and allowing for extensive customization of
plot aesthetics.

rayDISC 37

Value

Generates and displays a grid of profile likelihood plots, one for each parameter in the input model,
with visual cues for MLE and confidence intervals.

Author(s)

James D. Boyko

rayDISC Evolution of categorical traits

Description

Fits a model of evolution for categorical traits, allowing for multi-state characters, polymorphisms,
missing data, and incompletely resolved trees

Usage

rayDISC(phy,data, ntraits=1, charnum=1, rate.mat=NULL, model=c("ER","SYM","ARD"),
node.states=c("joint", "marginal", "scaled", "none"), state.recon=c("subsequently"),
lewis.asc.bias=FALSE, p=NULL, root.p="yang", ip=NULL, lb=1e-9, ub=100, verbose=TRUE,
diagn=FALSE)

Arguments

phy a phylogenetic tree, in ape “phylo” format.

data a data matrix containing species information (see Details).

ntraits specifies the number of traits to included in the analysis.

charnum specified the character to analyze.

rate.mat a user-supplied rate matrix index of parameters to be optimized.

model specifies the underlying model.

node.states method used to calculate ancestral states at internal nodes.

state.recon whether to reconstruct states jointly with the rates or subsequent to the rates
being optimized.

lewis.asc.bias a logical indicating whether the ascertainment bias correction of Lewis et al.
2001 should be used. The default is FALSE.

p a vector of transition rates. Allows the user to calculate the likelihood given a
specified set of parameter values to specified as fixed and calculate the likeli-
hood.

root.p a vector used to fix the probabilities at the root, but “yang” and “maddfitz” can
also be supplied to use the method of Yang (2006) and FitzJohn et al (2009),
respectively (see details).

ip initial values used for the likelihood search. Can be a single value or a vector of
unique values for each parameter. The default is ip=1.

38 rayDISC

lb lower bound for the likelihood search. The default is lb=0.

ub upper bound for the likelihood search. The default is ub=100.

verbose a logical indicating whether progress should be printed to the screen.

diagn logical indicating whether diagnostic tests should be performed. The default is
FALSE.

Details

__THIS FUNCTION IS NO LONGER NECESSARY AS IT IS NOW ENTIRELY SUBSUMED
WITHIN__ corHMM (see _Generalized corHMM_ vignette). But we still provide it for those that
are more comfortable using it than exploring the new corHMM function. As before, rayDISC takes
a tree and a trait file and estimates transition rates and ancestral states for binary or multistate
characters. The first column of the trait file must contain the species labels to match to the tree, with
the second, third, fourth, and so on, corresponding to the traits of interest. Use the charnum variable
to select the trait for analysis. Also, the input phylogeny need not be bifurcating as the algorithm is
implemented to handle multifucations. Polytomies are allowed by generalizing Felsenstein’s (1981)
pruning algorithm to be the product of the probability of observing the tip states of n descendant
nodes, rather than two, as in the completely bifurcating case.

The user can fix the root state probabilities by supplying a vector to the root.p. If the user supplies
the flag root.p=“yang”, then the estimated transition rates are used to set the weights at the root
(see pg. 124 Yang 2006), whereas specifying root.p=“maddfitz” employs the same procedure
described by Maddison et al. (2007) and FitzJohn et al. (2009). Note that the default root.p=NULL
assumes equal weighting among all possible states.

Ambiguities (polymorphic taxa or taxa missing data) are assigned likelihoods following Felsenstein
(2004, p. 255). Taxa with missing data are coded “?” with all states observed at a tip. Polymorphic
taxa are coded with states separated by an “&”. For example, if a trait has four states and taxonA
is observed to be in state 1 and 3, the character would be coded as “1&3”. corHMM then uses this
information to assign a likelihood of 1.0 to both states. Missing data are treated as ambiguous for
all states, thus all states for taxa missing data are assigned a likelihood of 1.0. For example, for a
four-state character (i.e. DNA), a taxon missing data will have likelihoods of all four states equal to
1.0 [e.g. L(A)=1.0, L(C)=1.0, L(G)=1.0, L(T)=1.0].

In all ancestral state reconstruction implementations, the rates are first estimated, and subsequently,
the MLE estimates of the rates are used to determine either the state probabilities (i.e., marginal or
"scaled") or maximum likelihood states at nodes. This is the default – i.e., the state.recon="subsequently"
argument. However, for this function only, we also allow for both rates and states to be estimated
jointly. This can be done with state.recon="estimate". We also allow for a hypothesis about states at
all or even some nodes to help fixed, with the rates (and in some cases some of the states) being esti-
mated. This is state.recon="given". For more information please see Vignette "Getting Likelihoods
From Reconstructions".

Value

rayDISC returns an object of class rayDISC. This is a list with elements:

$loglik the maximum negative log-likelihood.

$AIC Akaike information criterion.

$AICc Akaike information criterion corrected for sample size.

rayDISC 39

$ntraits The number of traits specified.

$solution a matrix containing the maximum likelihood estimates of the transition rates.

$solution.se a matrix containing the approximate standard errors of the transition rates. The
standard error is calculated as the square root of the diagonal of the inverse of
the Hessian matrix.

$index.mat The indices of the parameters being estimated are returned. The numbers corre-
spond to the row in the eigvect and can useful for identifying the parameters
that are causing the objective function to be at a saddlepoint.

$lewis.asc.bias

The setting describing whether or not the Lewis ascertainment bias correction
was used.

$opts Internal settings of the likelihood search.

$data User-supplied dataset.

$phy User-supplied tree.

$states The likeliest states at each internal node.

$tip.states NULL

$iterations The number of iterations used by the optimization routine.

$eigval The eigenvalues from the decomposition of the Hessian of the likelihood func-
tion. If any eigval<0 then one or more parameters were not optimized during
the likelihood search.

$eigvect The eigenvectors from the decomposition of the Hessian of the likelihood func-
tion is returned.

$bound.hit A logical for diagnosing if rate parameters were constrained by lb or ub values
during optimization.

$message.tree A list of taxa which were listed in the data matrix, but were not present in the
passed phylo object. These taxa will be excluded from the analysis. message.tree
is null if all taxa in data are included in tree.

$message.data A list of taxa which were present in the passed phylo object, but lacked data
in the passed data matrix. These taxa will be coded as missing data (all states
equally likely). message.data is null if all taxa in tree have entries in data
matrix.

Author(s)

Jeffrey C. Oliver and Jeremy M. Beaulieu

References

Felsenstein, J. 1981. A likelihood approach to character weighting and what it tells us about parsi-
mony and compatibility. Biological Journal of the Linnean Society 16: 183-196.

Felsenstein J. 2004. Inferring phylogenies. Sunderland MA: Sinauer Associates.

FitzJohn, R.G., W.P. Maddison, and S.P. Otto. 2009. Estimating trait-dependent speciation and
extinction rates from incompletely resolved phylogenies. Systematic Biology 58:595-611.

40 simMarkov

Lewis, P.O. 2001. A likelihood approach to estimating phylogeny from discrete morphological
character data. Systematic Biology 50:913-925.

Maddison, W.P., P.E. Midford, and S.P. Otto. 2007. Estimating a binary characters effect on speci-
ation and extinction. Systematic Biology 56:701-710.

See Also

plotRECON

Examples

Example 1
data(rayDISC.example)
Perform ancestral state estimation, using an asymmetric model of evolution and marginal
reconstruction of ancestral states
recon <- rayDISC(rayDISC.example$tree,rayDISC.example$trait,model="ARD",
node.states="marginal")

Plot reconstructions on tree
plotRECON(rayDISC.example$tree,recon$states)

Example 2
Perform ancestral state estimation on second character, using a single-rate model of
evolution, marginal reconstruction of ancestral states, and setting the lower bound for
parameter estimates to 0.01
recon <- rayDISC(rayDISC.example$tree,rayDISC.example$trait,charnum=2,model="ER",
node.states="marginal",lb=0.01)

Example 3
Perform ancestral state estimation on third character, using a single-rate model of
evolution and joint reconstruction of ancestral states
recon <- rayDISC(rayDISC.example$tree,rayDISC.example$trait,charnum=3,
model="ER",node.states="joint")

simMarkov Simulate a character on the tree

Description

Simulates a character using an instanteous rate matrix, storing the states at nodes and at the tips of
the tree.

Usage

simMarkov(phy, Q, root.freqs)

simMarkov 41

Arguments

phy A phylogeny of class phylo.

Q an instantaneous rate matrix.

root.freqs A vector of root frequencies.

Details

This function will generate a character at tips and at interior nodes given a tree and Q matrix.

Value

A two element list containing ‘TipStates‘ and ‘NodeStates‘

Author(s)

James D. Boyko

Index

∗ datasets
examples, 21

∗ models
ComputeCI, 6
corDISC, 8
corHMM, 10
corHMMDredge, 15
corHMMDredgeBase, 18
getFullMat, 24
getStateMat4Dat, 27
makeSimmap, 31
rayDISC, 37
simMarkov, 40

∗ plot
plot_batch_profile_lik, 36
plotMKmodel, 33
plotRECON, 34

∗ reconstructions
ancRECON, 2
ancRECON_slice, 5

ancRECON, 2
ancRECON_slice, 5

ComputeCI, 6
ConvertPhangornReconstructions, 7
corDISC, 8, 35
corHMM, 10, 26, 29
corHMMDredge, 15
corHMMDredgeBase, 18

dev.raydisc (rayDISC), 37
dropStateMatPars (getFullMat), 24

equateStateMatPars (getFullMat), 24
examples, 21

fitCorrelationTest, 21

get_batch_profile_lik, 28
getCVTable, 23

getFullMat, 24
getModelTable, 25
getRateCatMat (getFullMat), 24
getStateMat4Dat, 27

kFoldCrossValidation, 30

makeSimmap, 31

plot_batch_profile_lik, 36
plotMKmodel, 33
plotRECON, 34, 40
primates (examples), 21

rayDISC, 35, 37
rayDISC.example (examples), 21

simMarkov, 40

42

	ancRECON
	ancRECON_slice
	ComputeCI
	ConvertPhangornReconstructions
	corDISC
	corHMM
	corHMMDredge
	corHMMDredgeBase
	examples
	fitCorrelationTest
	getCVTable
	getFullMat
	getModelTable
	getStateMat4Dat
	get_batch_profile_lik
	kFoldCrossValidation
	makeSimmap
	plotMKmodel
	plotRECON
	plot_batch_profile_lik
	rayDISC
	simMarkov
	Index

